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A Generalization of the Transmission/Disequilibrium Test for Uncertain-
Haplotype Transmission
David Clayton
MRC Biostatistics Unit, Institute of Public Health, Cambridge

Summary

A new transmission/disequilibrium-test statistic is pro-
posed for situations in which transmission is uncertain.
Such situations arise when transmission of a multilocus
marker haplotype is considered, since haplotype phase
is often unknown in a substantial number of instances.
Even for single-locus markers, transmission is uncertain
if one or both parents are missing. In both these situa-
tions, uncertainty may be reduced by the typing of fur-
ther siblings, whose disease status may be unaffected or
unknown. The proposed test is a score test based on a
partial score function that omits the terms most influ-
enced by hidden population stratification.

Introduction

Until recently, the literature on transmission/disequilib-
rium testing assumed, for the most part, that marker
genotypes can be directly measured in affected cases and
in both their parents and, therefore, that transmissions
of haplotypes from parents to affected offspring can be
counted. In two important situations this is not the case:

1. both parents may not always be available, partic-
ularly for diseases with late onset, and

2. since, if considered alone, binary markers such as
single-nucleotide polymorphism (SNPs) may carry in-
sufficient information, it may be necessary to consider
haplotypes constructed from several such markers; how-
ever, haplotype phase is often uncertain.

In the former case, missing parental genotypes can be
inferred from offspring genotypes, but Curtis and Sham
(1995) have shown that restriction of the analysis to
families in which such inference is certain leads to bias.
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Several alternative proposals have been published re-
cently, mostly relying on the typing of further siblings,
either unaffected or with unknown disease phenotype
(Curtis 1997; Martin et al. 1997; Boehnke and Lan-
gefeld 1998; Horvath and Laird 1998; Schaid and Row-
land 1998; Spielman and Ewens 1998). These ap-
proaches have been reviewed and compared by Monks
et al. (1998).

Despite this work, no solution has yet been proposed
for the problem of phase uncertainty for marker hap-
lotypes, although the problems clearly have much in
common. Again, our ability to infer parental haplotypes
is enhanced by the typing of additional siblings, but it
is to be expected that, here too, restriction of the analysis
to families with known haplotype phase may lead to
bias.

This report proposes a new and unified approach to
these problems. In the next section, two different like-
lihood approaches to the analysis of transmission/dise-
quilibrium studies are compared for the case in which
all genotypes and transmissions are completely observed.
The likelihood approach to uncertain transmission is
then described, and its disadvantages are discussed. A
new approach is described, and some extensions are out-
lined. These sections of the report emphasize the theo-
retical principles behind the method; detailed algebraic
expressions are given in the Appendix.

Likelihoods, Score Tests, and the Transmission/
Disequilibrium Test (TDT)

The idea that underlies TDTs is that, in the presence
of association between a genetic marker and disease sus-
ceptibility (DS) (when such association is due to coin-
cidence of linkage and gametic-phase disequilibrium be-
tween marker and DS gene), the probability of
transmission of a marker gene from parents to an af-
fected offspring is increased from the .5 value predicted
by Mendelian inheritance. Several such tests have been
proposed; the relationship between these is clarified by
consideration of the likelihood for a disease-association
model that is parametrized in terms of probabilities of
disease, conditional on marker genotype, and of popu-
lation-allele (or, more generally, haplotype) frequencies
(Schaid 1996).
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At the marker locus, the genotype g consists of a pair
of haplotypes (i,j), and there is association between
marker and disease when, at the population level, the
probability of disease depends on the genotype. If this
probability is represented by pg, the genotype relative
risk (GRR) is defined as (here, the genotypef = p /pg g (1,1)

(1,1) has been taken as the reference genotype, so that
). If there are H distinct haplotypes, then theref = 1(1,1)

are distinct genotypes and, even forG = H(H � 1)/2
moderate H, many GRR parameters are required in or-
der to model association. Thus, to obtain powerful tests,
it may be necessary to consider a more restrictive model.

Falk and Rubinstein (1987) implicitly assumed a “ge-
notype relative risk” model in which a single copy of
the high-risk allele at a biallelic locus suffices to confer
maximum risk on the genotype. This model has only a
single association parameter and leads to a 1-df test sta-
tistic. However, the model does not easily generalize to
multiallelic markers. Instead, most authors, following
Terwilliger and Ott (1992), concentrate on a “haplotype-
based” approach. This implicitly assumes the model

, in which the two haplotypes act multiplica-f = v v(i,j) i j

tively. The parameters vi may be regarded as haplotype
relative risk (HRR) parameters (again, to ensure iden-
tifiability, it will be necessary to impose a constraint such
as the “corner” constraint ). With this model, thev = 01

(i,j) heterozygote genotype carries a relative risk equal
to the geometric mean of the relative risks for the fully
homozygote genotypes, . The model rep-�f = f f(i,j) (i,i) (j,j)

resents marker-disease association with free pa-H � 1
rameters and therefore leads to association tests with

df.H � 1
A full-probability model for the data must also de-

scribe the probability distribution of parental genotypes
in the population. Again, unless simplifying assumptions
are made, such a model can involve very many param-
eters. Accordingly, it is usual to assume no population
stratification and Hardy-Weinberg equilibrium, so that
the probability that a parent drawn from the population
at random has genotype isg = (i,j)

2w if i = jiPr(g = (i,j)) = {2w w otherwisei j

and the two parents’ genotypes are independent. The
parameters wi are the population haplotype relative fre-
quencies and obey the constraint . If the multi-S w = 1i i

plicative model for HRRs also holds, it is easily shown
that disease cases are also in Hardy-Weinberg equilib-
rium, with modified haplotype frequencies

w vi i∗w = . (1)i �w vj j
j

It is generally more convenient to work with un-
bounded parameters, and, accordingly, henceforth the
HRRs will be replaced by their logarithms, bi, and the
haplotype frequencies will be replaced by their multi-
nomial logit transformations, gi; and andv = exp bi i

. With these transformations, thew = exp g /S exp gi i i i

score functions are simply differences between observed
and expected counts of haplotypes (see the Appendix).

The likelihood contribution of a parent-offspring trio
ascertained via the affected offspring is the joint prob-
ability of parental and offspring genotypes, say PG and
OG, conditional on disease in the offspring, say OD =
; this, in turn, factorizes into two parts1

Pr(PG,OGFOD = 1) = Pr(PGFOD = 1)

#Pr(OGFPG,OD = 1) . (2)

The full-likelihood contribution and its two factors for
the ith such trio will be denoted by , , and ,(F) (P) (C)L L L(i) (i) (i)

respectively, so that, corresponding to equation(2),

(F) (P) (C)L = L L . (3)(i) (i) (i)

Detailed expressions for these likelihood contributions
are given in the Appendix, but here it need only be noted
that, whereas and depend on both sets of param-(F) (P)L L(i) (i)

eters, b and g, the “conditional” likelihood contribution
depends only on the HRR parameters b. If the cor-(C)L(i)

responding log-likelihood contributions are denoted by
, the log likelihood decomposes additively: (F)� � =(i)

. After summation over families, the total log(P) (C)� � �(i) (i)

likelihood decomposes in the same way (total log like-
lihoods will be indicated by omission of the subscript i).

This decomposition is central to what follows. Tests
for no association ( ) can be constructed by useH : b = 00

of either the full log likelihood, , or the conditional(F)�
log likelihood, . The former extracts more informa-(C)�
tion, but at a price; the extra term included, , is the(P)�
one that depends on the population model for parental
genotypes, and the integrity of the added information
depends strongly on correct specification of this model.
Thus, depends on b, because the conditioning on(P)�
presence of disease in offspring may induce deviation
from Hardy-Weinberg equilibrium and from independ-
ence of the two parental genotypes. Since the model
assumes that neither of these exists in the population,
evidence of such deviations for the parents within the
study constitutes evidence for disease-marker associa-
tion. In contrast, the conditional-likelihood term (C)�
does not depend on assumptions of the model for pa-
rental genotypes. This informal argument would suggest
that methods based on the full log likelihood may be
more powerful than those based on the conditional like-
lihood (Terwilliger and Ott 1992) but that they may give
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Table 1

Tests for Linkage/Gametic-Phase Equilibrium, Classified by the Likelihood on Which They Are Based and on Whether
They Are Score or Likelihood-Ratio Test

Likelihood Type Test (Source)

(F)� Score HRR (Falk and Rubinstein 1987)a

Marginal homogeneity test (Bickeböller and Clerget-Darpoux 1995)
Haplotype-based HRR, independence test (Terwilliger and Ott 1992)a

Likelihood ratio Likelihood-ratio test of Morris et al. (1997)a

(C)� Score TDT test (Spielman et al. 1993)a

Haplotype-based HRR, McNemar test (Terwilliger and Ott 1992)a

Stuart-Maxwell test (Stuart 1955; Maxwell 1970; Bickeböller and Clerget-Darpoux 1995)
Likelihood ratio Extended TDT test (Sham and Curtis 1995)

a Test is for biallelic markers.

incorrect answers if the assumptions of the population
model are not met (Spielman et al. 1993). For the lat-
ter reason, conditional-likelihood methods are usually
preferred.

Tests of association can be constructed in two ways,
from each of these likelihoods:

1. the log likelihood–ratio test, comparing twice the
log likelihood at the global maximum-likelihood esti-
mate, , with the maximized likelihood under theˆ�(b,g)
null hypothesis, : ;ˆˆ ˆˆ�(0,ĝ) 2[�(b,g) � �(0,ĝ)]

2. the score test based on the first-derivative vector of
evaluated at .ˆ� (0,ĝ)

Both tests simplify if the conditional likelihood is used,
since g is not involved. The two testing strategies are
asymptotically equivalent, leading to x2 tests on H � 1
df. Table 1 sets out some tests previously proposed, clas-
sified by the testing strategy and likelihood on which
they are based.

The approach proposed here for situations in which
the transmission pattern may be uncertain is based on
the score test, and this section concludes with some fur-
ther notation for this approach. The score vector, de-
noted by u, is the vector of first derivatives of the log
likelihood with respect to the parameters. This can be
partitioned into two parts corresponding to the two sets
of parameters:

��
ub

�b
u = = .( ) ��( )

ug
�g

The score vector is of length 2H, with the first H ele-
ments, ub, concerning the HRR parameters b and with
the next H elements, ub, concerning the logit-trans-
formed gene frequencies g. The information matrix, J,
is of size and can be partitioned similarly:2H # 2H

2 2� � � �
J Jbb bg T T�b�b �b�g

J = = �
2 2( ) � � � �( )

J Jgb gg T T�g�b �g�g

�u �ub b

T T�b �g
= � .

�u �u( )g g

T T�b �g

Standard likelihood theory shows that, when evaluated
at the correct parameter values, the variance-covariance
matrix of u is given by the expected value of J (since,
in the cases considered here, J does not depend on ran-
dom variables, a distinction between the observed and
expected values of J will not be made hereafter). Each
set of parameters will require a linear constraint for iden-
tifiability (e.g., one b and one g might be set to zero),
leaving free parameters, so that the rank of J2(H � 1)
will also be .2(H � 1)

In the same way as the log likelihood, , the values�
of u and J can be decomposed into contributions of
parents and of transmission from parents to offspring:

(F) (P) (C)u = u � u ,
(F) (P) (C)J = J � J .

Similarly, these arrays are sums of contributions for each
parent-offspring trio, which will be denoted by “u(i)” and
“J(i).” The full expressions for these contributions are
given in the Appendix.

After the score vector has been calculated at the null
hypothesis, , the score test is given byb = 0

T �u V u , (4)b bb b

where is a generalized inverse of the variance-co-�Vbb

variance matrix of ub. Asymptotically, this is distributed
as x2 with df equal to the rank of (usually ).V H � 1bb

Single-df tests for excess transmission of specific hap-
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lotypes may be constructed by dividing the square of the
appropriate element of ub by its variance. Clayton and
Jones (1999) have pointed out that both of these testing
strategies lack power for large H and have suggested an
alternative test based on a quadratic form in the score
vector, using a haplotype “similarity” matrix. This ap-
proach could be extended to the case in which haplotype
assignments are uncertain, along the lines suggested be-
low; but there are a number of technical problems, and
this will not be attempted here.

If the test is based on the conditional argument—that
is, if u(C) is used—then Vbb is given by the corresponding
information matrix, . However, if the full likelihood(C)Jbb

is used, a correction must be made for the fact that g

must be estimated. The estimated value of g for fixed b,
say , is obtained by solving the estimating equationˆ̂g

. A linear approximation leads tou = 0g

�( )u ≈ u � J J u , (5)b b bg gg gˆg=ĝ

where the score and information component on the
right-hand side are evaluated at the true values of b and
g. This, in turn, leads to the approximation

� TṼ ≈ J � J J J (6)bb bb bg gg bg

for the variance of . To perform the score test in(u ) ˆb g=ĝ

practice, J is evaluated at .ˆ(b = 0,g = ĝ)

Incomplete Data

Likelihood methods generalize naturally to situations
in which data are incomplete. Well-known results
(Dempster et al. 1977; Little and Rubin 1987) give the
score and information for incomplete data in terms of
moments of the corresponding functions for the com-
plete data, taken over the “posterior” distribution of the
complete data, given all the available data. Thus, the
data for the ith trio may be consistent with a set of
possible genotypes and transmissions, each giving a dif-
ferent likelihood contribution. If these are denoted by

, the log-likelihood contribution of such a trioL ,j � P(j)

is . If the score and information contri-� = log S LP j�P (j)

bution corresponding to the complete data likelihoods
L(j) are denoted by u(j) and J(j), the score contribution for
a trio with incomplete data is a weighted mean of the
possible complete-data contributions consistent with the
observed data:

� L u(j) (j)
j�Pu = . (7)P � L(j)

j�P

The variance-covariance matrix of is obtained fromuP

the corresponding information contribution:

T� L J � L u u(j) (j) (j) (j) (j)
j�P j�P TV = J = � � u u . (8)P P P P{ }� L � L(j) (j)

j�P j�P

These expressions could be used to compute the score
vector and information matrix for incomplete data, so
that, with use of expression (4) and equation (6), a score
test for association could be calculated.

This approach provides a solution to the problem of
uncertain-haplotype transmission, but it has a major dis-
advantage. Equations (7) and (8) require that L(j), u(j),
and J(j) refer to the full likelihood, so that they should
more correctly be written as , , and , respectively.(F) (F) (F)L u J(j) (j) (j)

Because of the summation over possible genotypes con-
sistent with the available data, the score contributions
from each trio no longer decompose into a parental con-
tribution and a conditional-likelihood contribution(P)uP

. Thus, this approach would not seem to lead to a(C)uP

test that is robust against deviation from the assumptions
of the model for the distribution of parental genotypes.

A Partial-Likelihood Argument

In this section, a compromise between the full-likeli-
hood approach and the conditional-likelihood approach
is proposed. For complete data in which both parental
genotypes and haplotype transmission to offspring are
observed with certainty, this uses the parental term L(P),
defined by equations (2) and (3), for inference concern-
ing g but reverts to the conditional part of the likelihood,
L(C), for inference concerning b. Thus, the contribution
of the ith such trio to the partial score function is

(C)��(i)(C)ub(i)
�b

(∗)u = = .(i) (P)( ) ��( )(i)(P)ug(i)
�g

Because they are based on factorization (3), the parental
and conditional score contributions and are in-(P) (C)u u(i) (i)

dependent, and the variance-covariance matrix of is(∗)u (i)

(C)J 0(∗) bb(i)V = . (9)(i) (P)( )0 Jgg(i)

Note that, because are no longer true score functions,(∗)u (i)

is no longer equal to the matrix of derivatives of(∗)V(i)

, which is(∗)u (i)
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(C)J 0(∗) bb(i)J = . (10)(i) (P) (P)( )J Jgb(i) gg(i)

When the data are incomplete, consistent with a set
of complete data scenarios , the proposed partial-j � P

score function is a weighted mean of the complete-data
partial-score functions over , using the full-likelihoodP

contributions as weights; that is,(F)L(j)

(F) (∗)� L u(j) (j)
j�P(∗)u = . (11)P (F)� L(j)

j�P

This approach does not entirely do away with the need
for a model for the distribution of parental genotypes,
but this model contributes only to the weights given to
the complete-data-score contributions for b in the mean
score and not to these contributions themselves. Intui-
tively, this strategy would be expected to be much more
robust against departures from the population model
than would a full-likelihood approach. The variance of

may be estimated by an expression similar to that(∗)uP

given in equation (8):

(F) (∗) (F) (∗) (∗) T� L V � L u (u )(j) (j) (j) (j) (j)
j�P j�P(∗) (∗) (∗) TV = � � u (u ) ,P P P(F) (F){ }� L � L(j) (j)

j�P j�P

(12)

and the matrix of derivatives of is given by(∗)uP

(F) (∗)� L J(∗) (j) (j)�u j�PP(∗)J = =P T T (F)�(b ,g ) � L(j)
j�P

(F) (∗) (F) T� L u (u )(j) (j) (j)
j�P (∗) (F) T� � u (u ) . (13)P P(F){ }� L(j)

j�P

The total partial-score vector, u(*), is obtained by sum-
mation of such contributions over families, as is its var-
iance V(*) and the matrix of derivatives .(∗)J

Although the complete-data-score contributions to
and are independent, as demonstrated by the(∗) (∗)u ub g

block-diagonal structure of the contributions V(*) seen
in equation (9), the process of averaging over toj � P

obtain the incomplete-data-score contributions leads to
the variance contributions given by equation (12), which
are not block diagonal. It is then necessary to take ac-
count of the need to estimate g when tests for b are
constructed. As outlined in the earlier discussion of the
standard-likelihood theory, this may be done by adopt-
ing the linear approximation to the estimating equations,
leading to equation (5). Because the information and

variance matrices no longer coincide, the variance esti-
mate for is now rather more complicated than(∗)(u ) ˆb g=ĝ

the expression given in equation (6):

(∗) (∗) (∗) (∗) � (∗) (∗) � T (∗) TṼ ≈ V � J (J ) V (J ) (J )bb bb bg gg gg gg bg

(∗) (∗) � (∗) (∗) (∗) � T (∗) T�J (J ) V � V (J ) (J ) . (14)bg gg gb bg gg bg

The theory of the proposed partial-score function has
been set out above in some generality and would allow
consistent estimation of b as well as the testing of hy-
pothetical values. However, some simplification is pos-
sible when the null hypothesis is tested. In thisb = 0
special case, we can embed the null hypothesis within
the model for parental genotypes, so that these are as-
sumed to be sampled at random from the population.
The dependence of and on b may then be ig-(P) (P)L u(j) g(j)

nored, leading to a number of simplifications:
1. is now block diagonal, given by the right-hand(∗)J(i)

side of equation (9);
2. similarly, the derivative matrix in the uncertain-

transmission case, , is given by equation (12); and(∗)JP

3. equation (14) reverts to the simpler form of equa-
tion (6).
This simplification becomes essential when, as below,
more-extended nuclear-family structures are considered.
In such cases, the dependence of L(P) on b becomes more
complicated and, particularly when multiple affected
offspring are considered, may involve ascertainment cor-
rections. In such circumstances, consistent estimation of
b under uncertain-haplotype transmission may prove
difficult, whereas testing the null hypothesis remains
straightforward.

To perform a score test of , the score equa-H : b = 00

tions are solved for the maximum-likelihood es-(∗)u = 0g

timate , with . The vector is then used in ex-(∗)ˆ̂g b = 0 ub

pression (4), to obtain an asymptotic x2 statistic.

Additional Offspring

Uncertainty of parental genotype and transmission to
the affected offspring, whether due to missing parental
genotype or phase uncertainty, may be reduced by typing
further offspring in the family. For the moment, assume
that these are either unaffected or of unknown disease
status. Although, strictly speaking, transmission to un-
affected offspring provides some information about the
association parameters b, since high-risk haplotypes will
be less likely to be transmitted to unaffected offspring,
the amount of information provided is negligible when
the risks of disease conditional on genotype, pg, are
small. In these circumstances, unaffected offspring and
offspring with unknown disease status can be treated in
exactly the same way; such offspring are ignored in the
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conditional-likelihood contributions and, conse-(C)L(i)

quently, in the . However, they are used when the set,(∗)ub

, of genotypes consistent with the available data is cal-P

culated and when the likelihood weights, when score
contributions over are averaged, are calculated.P

Additional affected offspring are more difficult to deal
with, since these potentially contribute to L(C) and, there-
fore, to . However, if the null hypothesis allows for(∗)ub

the presence of linkage between marker locus and dis-
ease-susceptibility locus, only specifying the gametic-
phase equilibrium, then the contributions of multiple
affected offspring to the family contribution to L(C) are
not independent. In this situation, some authors have
advocated use of only the first affected offspring, but
this may lead to considerable loss of information. More-
satisfactory approaches have been suggested by Martin
et al. (1997) and by Horvath and Laird (1998). The
approach proposed here can be extended to deal with
this difficulty, by application of the general results, re-
ported by Huber (1967), concerning “robust” variance
estimation when a likelihood is misspecified. When the
null hypothesis allows for linkage and more than one
affected offspring may be included for each family, the
expected value of u(*) is still zero, but its variance is
incorrectly estimated by the results given above. When
the method of Huber is followed, an alternative estimate
is provided by the empirical variance-covariance matrix
of the contributions of each family to u(*). Thus, if fam-
ilies 1,),N are consistent with genotype configurations

, then the overall score is , and its(∗) N (∗)P , ) ,P u = S u1 N i=1 Pi

variance can be estimated by

N 1(∗) (∗) (∗) T (∗) (∗) TV = u (u ) � u (u ) . (15)� P Pi i Ni=1

After estimation of g, a robust variance estimate for
can be obtained from equations (14) and (15).(∗)ub

Discussion

This report has set out the statistical theory behind
the proposed new approach to transmission/disequilib-
rium testing. Numerical results concerning its perform-
ance in the situation in which one parent is unavailable
have been provided by A. Cervino, A. Hill, and P. Don-
nelly (personal communication), who demonstrate that
the method is indeed highly robust against violation of
the assumption of no population stratification—at least
in the situations that they considered. The method has
a number of advantages over other approaches that have
been proposed. First, it is efficient, making full use of
whatever parental data are available. Second, by use of
the robust variance estimator (15), more than one af-
fected offspring per family may be used, even in the

presence of linkage. Third, this would seem to be the
only approach so far proposed that will deal with the
problem of phase uncertainty for multilocus haplotypes.
This will be an important problem as attention turns to
SNP markers within candidate genes. (A computer pro-
gram, “TRANSMIT,” which implements the methods
described in this report, is available from the author
[Medical Research Council Biostatistics Unit].)

Appendix A

Likelihood, Score, and Information Contributions

Consider a marker with m alleles or possible haplo-
types and a family (parent-offspring trio), f, in which
the parental genotypes are (p,q) and (r,s) and the affected
offspring is (p,r). In terms of the original gene frequency
and HRR parameters, the full-likelihood contribution of
the family is

(F)L = Pr(PG,OGFOD = 1)(f )

w w w w v vp q r s p r= ����www w (v v � v v � v v � v v )i j k � i k i � j k j �
i j k �

w w w v w vq s p p r r= �w �w �w v �w vi i i i i i
i i i i

∗ ∗= w w w w ,q s p r

where all the summations are over the range 1,),m and
, the relative frequency of haplotype i in cases, is given∗wi

by equation (1). The final simplified form makes it clear
that this likelihood is equivalent to the suggestion, by
Terwilliger and Ott (1992), that haplotypes p and r may
be regarded as “case” haplotypes and that the untrans-
mitted haplotypes q and s may be regarded as “con-
trols.” The two factors in the factorization (3) of this
contribution are

(P)L = Pr(PGFOD = 1)(f )

2= w w w w (v � v )(v � v )/ w v ;�p q r s p q r s i i( )
i

(C)L = Pr(OGFPG,OD = 1)(f )

v vp r= .
(v � v ) (v � v )p q r s

Thus the conditional-likelihood contribution involves
only the HRR parameters, whereas the parental contri-
bution involves both sets of parameters.
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All the score functions may be regarded as observed
counts minus expected counts. When Ni is used to denote
the number of times that haplotype i occurs in the two
parents, the score contributions with respect to gi are

(F) (P)�� ��(f ) (f ) ∗= = N � 2w � 2w . (A1)i i i
�g �gi i

When Ti is used to denote the number of times that
haplotype i is transmitted to the affected offspring, the
score contribution for bi, based on the full likelihood, is

. The corresponding score contribu-(F) ∗�� /�b = T � 2w(f ) i i i

tion based on the conditional likelihood has a similar
observed-minus-expected form, but the expected fre-
quencies are now based on transmission probabilities:

(C)��(f ) = T � E ;i i
�bi

E = (D v � D v )/(v � v ),i ip p iq q p q

�(D v � D v )/(v � v ) , (A2)ir r is s r s

where Dij is the Kronecker delta, taking the value 1 if
and 0 otherwise. It follows that the score contri-i = j

bution for bi based on the parental likelihood is
. It is clear from this expression why(P) ∗�� /�b = E � 2w(f ) i i i

this term is so dependent on the assumptions of no pop-
ulation stratification and Hardy-Weinberg equilibrium.

The important score functions are equations (A1) and
(A2), and, under the null hypothesis, these take the
values

(F) (P)�� ��(f ) (f )= = N � 4w ;i i
�g �gi i

(C)�� N(f ) i= T � .i
�b 2i

The corresponding information contributions are ob-
tained by differentiation of equations (A1) from equa-
tions (A2). At the null hypothesis, after it is noted that

,S w = 1k k

2 (F) 2 (P)� � � �(f ) (f ) ( )= = 4 D w � ww ;ij i i j
�g �g �g �gi j i j

2 (F) 2 (P)� � � �(f ) (f ) ( )= = 2 D w � ww .ij i i j
�g �b �g �bi j i j

Only a small number of the elements of the matrix
(again evaluated at the null hypothesis)2 (C) T[� � /�b�b ]

need to be updated. If , the diagonal elements (p,p)p ( q
and (q,q) must be incremented by � , and the off-di-1

4

agonal elements (p,q) and (q,p) must be incremented by
� . A similar procedure is used for r,s.1

4
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